login
A245279
Decimal expansion of a1, the first of two constants associated with Djokovic's conjecture on an integral inequality.
1
1, 8, 2, 4, 8, 7, 8, 8, 7, 5, 2, 1, 9, 7, 9, 3, 3, 9, 8, 4, 1, 6, 7, 9, 3, 9, 1, 4, 8, 7, 8, 2, 0, 6, 6, 4, 8, 7, 5, 3, 0, 3, 9, 3, 8, 3, 2, 5, 0, 5, 4, 0, 3, 2, 1, 1, 9, 8, 6, 6, 4, 9, 9, 4, 5, 6, 5, 1, 8, 8, 3, 9, 7, 7, 1, 6, 0, 0, 9, 2, 1, 1, 7, 8, 4, 8, 9, 9, 7, 8, 0, 4, 3, 7, 2, 6, 0, 9, 6, 9, 7, 4, 0
OFFSET
0,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.1.1 Djokovic's Conjecture, p. 210.
FORMULA
Positive root of 12*x^3 - 16*x^2 + 8*x - 1.
Equals (r - 8/r + 8)/18, where r = (27*sqrt(17)-109)^(1/3).
EXAMPLE
0.1824878875219793398416793914878206648753039383250540321198664994565...
MATHEMATICA
a1 = Root[12*x^3 - 16*x^2 + 8*x - 1, x, 1]; RealDigits[a1, 10, 103] // First
CROSSREFS
Cf. A245280.
Sequence in context: A073440 A245533 A021552 * A321071 A008830 A248302
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved