login
A244912
Sum of leading digit in representations of n in bases 2,3,...,n.
1
1, 2, 3, 4, 6, 7, 9, 9, 11, 12, 15, 16, 18, 20, 20, 21, 25, 26, 29, 31, 33, 34, 38, 36, 38, 39, 42, 43, 47, 48, 52, 54, 56, 58, 58, 59, 61, 63, 67, 68, 72, 73, 76, 79, 81, 82, 88, 84, 88, 90, 93, 94, 99, 101, 105, 107, 109, 110, 116, 117, 119, 122, 117, 119, 123
OFFSET
2,2
LINKS
EXAMPLE
8 in bases 2...8 is:
1000 (base 2)
22 (base 3)
20 (base 4)
13 (base 5)
12 (base 6)
11 (base 7)
10 (base 8)
The sum of first digits is 1+2+2+1+1+1+1 = 9, so a(8)=9.
MATHEMATICA
f[n_] := Sum[ IntegerDigits[n, k][[1]], {k, 2, n}]; Array[f, 70, 2] (* Robert G. Wilson v, Aug 02 2014 *)
PROG
(Python)
import math
def modlg(a, b):
....return a // b**int(math.log(a, b))
for n in range(1, 77):
....s=0
....for k in range(2, n+1):
........s += modlg(n, k)
....print str(s)+', ',
(PARI) a(n) = sum(i=2, n, digits(n, i)[1]); \\ Michel Marcus, Jul 17 2014
CROSSREFS
Cf. A004125 (sum of last digits), A043306 (sum of all digits).
Sequence in context: A132988 A363997 A342760 * A249745 A114956 A039256
KEYWORD
nonn,base
AUTHOR
Alex Ratushnyak, Jul 08 2014
STATUS
approved