login
A244073
Odd integers n such that for every integer k>0, n*2^k-1 has a divisor in the set {3, 5, 7, 13, 19, 73, 109}.
15
1744117, 6975809, 7790113, 11942443, 13006807, 16861093, 16882181, 17207051, 20003369, 20147891, 21013423, 25638127, 42918821, 45113083, 47285977, 48635609, 49884041, 53335151, 53538727, 56592041, 63412693, 63750101, 64062209, 65739209
OFFSET
1,1
COMMENTS
For n > 144 a(n) = a(n-144) + 412729590, the first 144 values are in the table.
LINKS
FORMULA
For n > 144, a(n) = a(n-144) + 412729590.
PROG
(PFGW & SCRIPT)
SCRIPT
DIM n
DIM k, 1
OPENFILEOUT myf, a(n).txt
LABEL loop1
SET k, k+2
SET n, 0
LABEL a
SET n, n+1
IF n>500 THEN GOTO b
IF (k*(2^n)-1)%3==0 THEN GOTO a
IF (k*(2^n)-1)%5==0 THEN GOTO a
IF (k*(2^n)-1)%7==0 THEN GOTO a
IF (k*(2^n)-1)%13==0 THEN GOTO a
IF (k*(2^n)-1)%19==0 THEN GOTO a
IF (k*(2^n)-1)%73==0 THEN GOTO a
IF (k*(2^n)-1)%109==0 THEN GOTO a
GOTO loop1
LABEL b
WRITE myf, k
PRINT k
GOTO loop1
CROSSREFS
KEYWORD
nonn
AUTHOR
Pierre CAMI, Jun 19 2014
STATUS
approved