%I #7 Jun 05 2014 04:46:12
%S 1,1,3,9,60,417,3430,29927,278316,2693437,26976407,277394148,
%T 2916106328,31220964707,339508802940,3741551907530,41714692453164,
%U 469827584596185,5339334757945439,61165396353689573,705720529604453193,8195208178337460065,95724512701573485819,1124070800784913396731
%N G.f. A(x) satisfies: coefficient of x^n in A(x)^(2*n) equals A005260(n) = Sum_{k=0..n} C(n,k)^4.
%H Vaclav Kotesovec, <a href="/A243425/b243425.txt">Table of n, a(n) for n = 0..600</a>
%F G.f.: sqrt( x / Series_Reversion( x*exp( Sum_{n>=1} A005260(n)*x^n/n ) ) ), where A005260(n) = Sum_{k=0..n} C(n,k)^4.
%F a(n) ~ c * d^n / n^(5/2), where d= 13.142352254618115022093263384837224..., c = 0.051491668112404252102416729094836... . - _Vaclav Kotesovec_, Jun 05 2014
%e G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 60*x^4 + 417*x^5 + 3430*x^6 +...
%e Form a table of coefficients in A(x)^(2*n) for n>=0, which begins:
%e [1, 0, 0, 0, 0, 0, 0, 0, 0, ...];
%e [1, 2, 7, 24, 147, 1008, 8135, 70296, 648172, ...];
%e [1, 4, 18, 76, 439, 2940, 22936, 194300, 1761411, ...];
%e [1, 6, 33, 164, 960, 6378, 48526, 403440, 3598050, ...];
%e [1, 8, 52, 296, 1810, 12128, 90972, 744656, 6542519, ...];
%e [1, 10, 75, 480, 3105, 21252, 158845, 1286240, 11157705, ...];
%e [1, 12, 102, 724, 4977, 35100, 263844, 2125020, 18253680, ...];
%e [1, 14, 133, 1036, 7574, 55342, 421484, 3395016, 28975933, ...];
%e [1, 16, 168, 1424, 11060, 84000, 651848, 5277696, 44916498, ...]; ...
%e then the main diagonal forms A005260(n) = Sum_{k=0..n} C(n,k)^4.
%o (PARI) {a(n)=polcoeff(sqrt(x/serreverse(x*exp(sum(m=1, n+1, sum(k=0, m, binomial(m, k)^4)*x^m/m +x^2*O(x^n))))), n)}
%o for(n=0, 30, print1(a(n), ", "))
%Y Cf. A242903.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Jun 04 2014