OFFSET
1,3
COMMENTS
Let x(1) = 1, x(2) = 1, then begin the sequence x(i) = no-zero(x(i-2) + x(i-1)), where the function no-zero(n) removes all zero digits from n.
The sequence behaves like a standard Fibonacci sequence until step 15, where x = no-zero(233 + 377) = no-zero(610) = 61. At step 16, x = 377 + 61 = 438. The sequence then proceeds until step 927, where x = no-zero(224 + 377) = no-zero(601) = 61. Therefore at step 928, x = 377 + 61 = 438 and the sequence repeats.
LINKS
Anthony Sand, Table of n, a(n) for n = 1..927
FORMULA
x(i) = no-zero(x(i-2) + x(i-1)). For example, no-zero(233 + 377) = no-zero(610) = 61.
EXAMPLE
x(3) = x(1) + x(2) = 1 + 1 = 2.
x(4) = x(2) + x(3) = 1 + 2 = 3.
x(15) = no-zero(x(13) + x(14)) = no-zero(233 + 377) = no-zero(610) = 61.
x(16) = 377 + 61 = 438.
MAPLE
noz:=proc(n) local a, t1, i, j; a:=0; t1:=convert(n, base, 10); for i from 1 to nops(t1) do j:=t1[nops(t1)+1-i]; if j <> 0 then a := 10*a+j; fi; od: a; end; # A004719
t1:=[1, 1]; for n from 3 to 100 do t1:=[op(t1), noz(t1[n-1]+t1[n-2])]; od: t1; # N. J. A. Sloane, Jun 11 2014
MATHEMATICA
Nest[Append[#, FromDigits@ DeleteCases[IntegerDigits[Total@ #[[-2 ;; -1]] ], _?(# == 0 &)]] &, {1, 1}, 45] (* Michael De Vlieger, Jun 27 2020 *)
nxt[{a_, b_}]:={b, FromDigits[DeleteCases[IntegerDigits[a+b], 0]]}; NestList[nxt, {1, 1}, 50][[All, 1]] (* Harvey P. Dale, Sep 12 2022 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Anthony Sand, Jun 09 2014
STATUS
approved