login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243063
Numbers generated by a Fibonacci-like sequence in which zeros are suppressed.
9
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 61, 438, 499, 937, 1436, 2373, 389, 2762, 3151, 5913, 964, 6877, 7841, 14718, 22559, 37277, 59836, 97113, 156949, 25462, 182411, 27873, 21284, 49157, 7441, 56598, 6439, 6337, 12776, 19113, 31889, 512, 3241
OFFSET
1,3
COMMENTS
Let x(1) = 1, x(2) = 1, then begin the sequence x(i) = no-zero(x(i-2) + x(i-1)), where the function no-zero(n) removes all zero digits from n.
The sequence behaves like a standard Fibonacci sequence until step 15, where x = no-zero(233 + 377) = no-zero(610) = 61. At step 16, x = 377 + 61 = 438. The sequence then proceeds until step 927, where x = no-zero(224 + 377) = no-zero(601) = 61. Therefore at step 928, x = 377 + 61 = 438 and the sequence repeats.
FORMULA
x(i) = no-zero(x(i-2) + x(i-1)). For example, no-zero(233 + 377) = no-zero(610) = 61.
EXAMPLE
x(3) = x(1) + x(2) = 1 + 1 = 2.
x(4) = x(2) + x(3) = 1 + 2 = 3.
x(15) = no-zero(x(13) + x(14)) = no-zero(233 + 377) = no-zero(610) = 61.
x(16) = 377 + 61 = 438.
MAPLE
noz:=proc(n) local a, t1, i, j; a:=0; t1:=convert(n, base, 10); for i from 1 to nops(t1) do j:=t1[nops(t1)+1-i]; if j <> 0 then a := 10*a+j; fi; od: a; end; # A004719
t1:=[1, 1]; for n from 3 to 100 do t1:=[op(t1), noz(t1[n-1]+t1[n-2])]; od: t1; # N. J. A. Sloane, Jun 11 2014
MATHEMATICA
Nest[Append[#, FromDigits@ DeleteCases[IntegerDigits[Total@ #[[-2 ;; -1]] ], _?(# == 0 &)]] &, {1, 1}, 45] (* Michael De Vlieger, Jun 27 2020 *)
nxt[{a_, b_}]:={b, FromDigits[DeleteCases[IntegerDigits[a+b], 0]]}; NestList[nxt, {1, 1}, 50][[All, 1]] (* Harvey P. Dale, Sep 12 2022 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Anthony Sand, Jun 09 2014
STATUS
approved