login
A242267
Numbers that can be written as a sum of numbers using all decimal digits in descending order.
1
45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 135, 144, 153, 162, 171, 180, 189, 198, 207, 216, 225, 234, 243, 252, 261, 270, 288, 297, 306, 315, 324, 333, 342, 351, 360, 369, 378, 387, 396, 405, 414, 423, 432, 441, 468, 477, 486, 495, 504, 522, 531, 540, 549
OFFSET
1,1
COMMENTS
The sequence is divisible by 9 and contains 368 terms. The first term is 45 = 9 + 8 + ... + 1 + 0; the last two terms are 876543219 = 9 + 876543210 and 987654321 = 987654321 + 0.
The decomposition is not unique.
LINKS
EXAMPLE
540 is in the sequence because 540 = 9 + 8 + 76 + 5 + 432 + 10.
MAPLE
g:= proc(i, j) option remember;
`if`(i=j, {10-i}, {parse(cat(seq(10-h, h=i..j))),
seq(seq(seq(x+y, y=g(h+1, j)), x=g(i, h)), h=i..j-1)})
end:
sort([(g(1, 10) minus {9876543210})[]])[]; # program after Alois P. Heinz, May 09 2014, adapted for this sequence. See A242263.
CROSSREFS
Cf. A242263.
Sequence in context: A184043 A345482 A295802 * A242226 A335375 A039423
KEYWORD
nonn,base,fini,full
AUTHOR
Michel Lagneau, May 10 2014
STATUS
approved