login
Decimal expansion of 1/log(2)-1, the mean value of a random variable following the Gauss-Kuzmin distribution.
0

%I #25 May 28 2021 06:13:16

%S 4,4,2,6,9,5,0,4,0,8,8,8,9,6,3,4,0,7,3,5,9,9,2,4,6,8,1,0,0,1,8,9,2,1,

%T 3,7,4,2,6,6,4,5,9,5,4,1,5,2,9,8,5,9,3,4,1,3,5,4,4,9,4,0,6,9,3,1,1,0,

%U 9,2,1,9,1,8,1,1,8,5,0,7,9,8,8,5,5,2,6,6,2,2,8,9,3,5,0,6,3,4,4

%N Decimal expansion of 1/log(2)-1, the mean value of a random variable following the Gauss-Kuzmin distribution.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.17 Gauss-Kuzmin-Wirsing constant, p. 151.

%H Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, arXiv:2001.00578 [math.HO], 2020, 2.17 p. 21.

%H Michael Penn, <a href="https://www.youtube.com/watch?v=Fm5az_95nQs">This infinite series is crazy!</a>, YouTube video, 2020.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%F Equals (1/log(2))*Integral_{x=0..1} x/(1+x) dx.

%F Equals Sum_{k>=1} 1/(2^k*(1 + 2^(2^(-k)))). - _Amiram Eldar_, May 28 2021

%e 0.4426950408889634073599246810018921374266459541529859341354494...

%t RealDigits[1/Log[2] - 1, 10, 99] // First

%Y Cf. A007525.

%K nonn,cons,easy

%O 0,1

%A _Jean-François Alcover_, Aug 13 2014