%I #4 Apr 15 2014 12:39:31
%S 2,3,2,4,3,4,7,2,4,6,10,10,3,6,8,15,18,24,6,8,14,24,18,60,64,6,12,20,
%T 35,46,93,163,132,15,13,30,54,58,297,280,598,690,31,20,48,83,102,507,
%U 1423,1392,3411,2142,58,28,70,124,173,1264,4167,10921,13273,11283,7144,170,38
%N T(n,k)=Number of nXk 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4
%C Table starts
%C ..2..3...4.....7......10........15..........24..........35..........54
%C ..2..3...2....10......18........18..........46..........58.........102
%C ..4..4...3....24......60........93.........297.........507........1264
%C ..6..6...6....64.....163.......280........1423........4167.......13389
%C ..8..8...6...132.....598......1392.......10921.......72769......370453
%C .14.12..15...690....3411.....13273......189680.....2667280....18820225
%C .20.13..31..2142...11283.....89910.....1511923....30914092...376386754
%C .30.20..58..7144...72578...1128052....35582068..1432670661.26960360814
%C .48.28.170.30662..404421..13331118...776191453.62057946683
%C .70.38.388.95669.2220973.128026529.14877945554
%H R. H. Hardin, <a href="/A241054/b241054.txt">Table of n, a(n) for n = 1..143</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-2) +2*a(n-3)
%F k=2: a(n) = 2*a(n-2) -a(n-4) +a(n-5) -a(n-7) +a(n-8) +a(n-11) for n>15
%F Empirical for row n:
%F n=1: a(n) = a(n-2) +2*a(n-3)
%F n=2: [order 15] for n>17
%F n=3: [order 70] for n>85
%e Some solutions for n=4 k=4
%e ..3..2..3..3....3..3..2..2....3..2..3..2....3..3..2..3....3..3..2..2
%e ..2..1..1..0....2..1..1..3....2..1..1..0....2..1..1..0....2..1..1..3
%e ..2..0..2..0....3..3..2..2....2..1..3..0....3..3..2..2....3..3..2..3
%e ..2..0..0..0....2..0..2..0....2..1..2..0....3..1..0..0....2..1..2..3
%Y Column 1 is A239851
%Y Row 1 is A159288(n+1)
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Apr 15 2014