login
A240937
Least number k >= 0 such that n! + k is a cube.
2
0, 6, 2, 3, 5, 9, 792, 2555, 10368, 23464, 84888, 1047087, 2483200, 54721675, 228537856, 1394007616, 5090444477, 51286309703, 608427634303, 3260058995493, 11314112766137, 51848285189219, 1034026438223449, 11075640379838488, 181108172062981288, 1566869630866485093
OFFSET
1,2
LINKS
MAPLE
f:= proc(n) local N; N:= n!; ceil(N^(1/3))^3 - N end proc:
seq(f(n), n=1..30); # Robert Israel, Aug 04 2014
MATHEMATICA
f[n_] := Block[{c = n! - 1}, (1 + Floor[c^(1/3)])^3 - c - 1]; Array[f, 26] (* Robert G. Wilson v, Aug 04 2014 *)
PROG
(PARI)
a(n)=for(k=0, 10^10, s=n!+k; if((ispower(s)&&ispower(s)%3==0)||s==1, return(k)))
n=1; while(n<20, print1(a(n), ", "); n++)
(PARI) vector(50, n, ceil(n!^(1/3))^3-n!) \\ faster program
CROSSREFS
Cf. A068869.
Sequence in context: A011362 A090425 A160081 * A178054 A195453 A259543
KEYWORD
nonn
AUTHOR
Derek Orr, Aug 03 2014
EXTENSIONS
a(15) onward from Robert G. Wilson v, Aug 04 2014
STATUS
approved