login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240880 Expansion of g.f.: (-1 + sqrt(1+12*x+48*x^2)) / (6*x). 3

%I

%S 1,1,-6,33,-162,666,-1836,-2079,79542,-741474,4907628,-24837030,

%T 82449900,53319060,-3741922008,38613958497,-274566158298,

%U 1475669401398,-5211777090564,-2356585871778,240686500011588,-2593621485808596,19047621883804056,-105353643788834598

%N Expansion of g.f.: (-1 + sqrt(1+12*x+48*x^2)) / (6*x).

%C This sequence is the member (q=-3) of a class of generalized Catalan numbers (see A000108), with g.f. (1-sqrt(1-q*4*x*(1-(q-1)*x)))/(2*q*x), q<>0.

%H Fung Lam, <a href="/A240880/b240880.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: (-1 + sqrt(1+12*x+48*x^2)) / (6*x).

%F Recurrence: (n+3)*a(n+2)+6*(2*n+3)*a(n+1)+48*n*a(n)=0, a(0)=1, a(1)=1.

%F Lim sup n->infinity |a(n)|^(1/n) = 4*sqrt(3) = 6.9282... - _Vaclav Kotesovec_, May 02 2014

%F a(n) ~ 3^(n/2-1)*4^n / (n^(3/2)*sqrt(Pi)) * (sqrt(3)*cos(5*Pi*n/6) + 3*sin(5*Pi*n/6) - (15*sqrt(3)*cos(5*Pi*n/6) + 9*sin(5*Pi*n/6))/(8*n)). - _Vaclav Kotesovec_, May 02 2014

%Y Cf. A000108, A258723.

%K sign,easy

%O 0,3

%A _Fung Lam_, May 01 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 24 06:13 EST 2018. Contains 299597 sequences. (Running on oeis4.)