login
A240760
T(n,k)=Number of nXk 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4
7
2, 5, 2, 11, 6, 4, 25, 9, 12, 6, 57, 42, 19, 16, 8, 129, 124, 142, 24, 16, 14, 293, 474, 553, 348, 25, 35, 20, 665, 1440, 4112, 1750, 653, 35, 35, 30, 1509, 5239, 18373, 20657, 5325, 1809, 45, 36, 48, 3425, 16730, 131958, 149324, 77314, 21859, 3606, 76, 65, 70, 7773
OFFSET
1,1
COMMENTS
Table starts
..2..5..11....25......57......129.......293........665........1509.......3425
..2..6...9....42.....124......474......1440.......5239.......16730......58945
..4.12..19...142.....553.....4112.....18373.....131958......625820....4472258
..6.16..24...348....1750....20657....149324....1954881....16557694..232884150
..8.16..25...653....5325....77314....947937...21847993...336059014.9470457699
.14.35..35..1809...21859...500139...9748926..420731038.11098085704
.20.35..45..3606...66809..2319189..75889699.5873834148
.30.36..76..8307..222091.11311246.583512422
.48.65.117.20609..811643.62333325
.70.83.180.42658.2448916
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-2) +2*a(n-3)
k=2: a(n) = 3*a(n-3) +a(n-5) -2*a(n-8) -4*a(n-9) -a(n-11) +2*a(n-14) for n>17
k=3: [order 76] for n>84
Empirical for row n:
n=1: a(n) = a(n-1) +2*a(n-2) +2*a(n-3)
EXAMPLE
Some solutions for n=4 k=4
..3..3..1..1....2..2..2..2....3..3..1..3....2..1..1..3....2..2..3..3
..2..0..2..3....3..3..1..1....2..0..0..2....3..3..0..2....3..1..0..2
..2..0..2..3....3..2..0..1....3..1..0..2....2..1..3..2....2..0..1..3
..2..0..0..2....2..0..2..2....3..1..0..2....2..0..1..2....2..0..1..3
CROSSREFS
Column 1 is A239851
Row 1 is A239812
Sequence in context: A358309 A276609 A292591 * A207635 A205715 A181338
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 12 2014
STATUS
approved