login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240511
Numbers that are equal to the sum of their digits raised to each power from 1 to the number of digits.
1
1, 2, 3, 4, 5, 6, 7, 8, 9, 90, 336, 4538775, 183670618662, 429548754570, 3508325641459, 3632460407839, 9964270889420, 10256010588126, 509608423720931, 589543349257828, 75363159369591953, 108765782844884700, 360449417601592380, 1574414276673927523
OFFSET
1,2
COMMENTS
Numbers with only 0 and 1 as digits are not considered. - Paolo P. Lava, Jan 11 2017
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..54 (terms < 10^32)
José de Jesús Camacho Medina, Misterio de Números
FORMULA
f(n) = Sum_{i,1,floor(log_10(n))+1} (Sum_{k,0,floor(log_10(n))+1} (floor(n/10^k) - 10*floor(n/10^(k + 1)))^(i)). If f(n)-n=0 then n is a number of this category. - José de Jesús Camacho Medina, Apr 07 2014
EXAMPLE
9 = (9^1).
90 = (9^1 + 0^1) + (9^2 + 0^2).
336 = (3^1 + 3^1 + 6^1) + (3^2 + 3^2 + 6^2) + (3^3 + 3^3 + 6^3).
MATHEMATICA
Q = Table[Sum[(Sum[(Floor[f/10^n] - 10*Floor[f/10^(n + 1)])^(i), {n, 0, Floor[Log[10, f]] + 1}]), {i, 1, Floor[Log[10, f]] + 1}], {f, 336}] - Range[336]; Flatten@ Position[Q, 0]
Select[Range[10^3], Plus @@ Power @@@ Tuples[{IntegerDigits @ #, Range@ IntegerLength@ #}] == # &] (* Giovanni Resta, Apr 30 2014 *)
PROG
(PARI) isok(n) = (d = digits(n)) && (n == sum(i=1, #d, sum(j=1, #d, d[j]^i))); \\ Michel Marcus, Apr 07 2014
CROSSREFS
Sequence in context: A338831 A024664 A078188 * A345406 A198486 A061805
KEYWORD
nonn,base,fini
AUTHOR
EXTENSIONS
a(12)-a(24) from Giovanni Resta, Apr 07 2014
STATUS
approved