login
A240511
Numbers that are equal to the sum of their digits raised to each power from 1 to the number of digits.
1
1, 2, 3, 4, 5, 6, 7, 8, 9, 90, 336, 4538775, 183670618662, 429548754570, 3508325641459, 3632460407839, 9964270889420, 10256010588126, 509608423720931, 589543349257828, 75363159369591953, 108765782844884700, 360449417601592380, 1574414276673927523
OFFSET
1,2
COMMENTS
Numbers with only 0 and 1 as digits are not considered. - Paolo P. Lava, Jan 11 2017
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..54 (terms < 10^32)
José de Jesús Camacho Medina, Misterio de Números
FORMULA
f(n) = Sum_{i,1,floor(log_10(n))+1} (Sum_{k,0,floor(log_10(n))+1} (floor(n/10^k) - 10*floor(n/10^(k + 1)))^(i)). If f(n)-n=0 then n is a number of this category. - José de Jesús Camacho Medina, Apr 07 2014
EXAMPLE
9 = (9^1).
90 = (9^1 + 0^1) + (9^2 + 0^2).
336 = (3^1 + 3^1 + 6^1) + (3^2 + 3^2 + 6^2) + (3^3 + 3^3 + 6^3).
MATHEMATICA
Q = Table[Sum[(Sum[(Floor[f/10^n] - 10*Floor[f/10^(n + 1)])^(i), {n, 0, Floor[Log[10, f]] + 1}]), {i, 1, Floor[Log[10, f]] + 1}], {f, 336}] - Range[336]; Flatten@ Position[Q, 0]
Select[Range[10^3], Plus @@ Power @@@ Tuples[{IntegerDigits @ #, Range@ IntegerLength@ #}] == # &] (* Giovanni Resta, Apr 30 2014 *)
PROG
(PARI) isok(n) = (d = digits(n)) && (n == sum(i=1, #d, sum(j=1, #d, d[j]^i))); \\ Michel Marcus, Apr 07 2014
CROSSREFS
Sequence in context: A338831 A024664 A078188 * A345406 A198486 A061805
KEYWORD
nonn,base,fini
AUTHOR
EXTENSIONS
a(12)-a(24) from Giovanni Resta, Apr 07 2014
STATUS
approved