login
A240260
T(n,k)=Number of nXk 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4
8
3, 7, 7, 16, 26, 16, 38, 102, 89, 38, 90, 429, 707, 342, 90, 212, 1814, 5610, 5484, 1362, 212, 500, 7576, 45436, 85567, 43200, 5447, 500, 1180, 31876, 368247, 1378558, 1350983, 343959, 21816, 1180, 2784, 134302, 2999288, 22319938, 43503375
OFFSET
1,1
COMMENTS
Table starts
....3.......7.........16..........38............90...........212...........500
....7......26........102.........429..........1814..........7576.........31876
...16......89........707........5610.........45436........368247.......2999288
...38.....342.......5484.......85567.......1378558......22319938.....362690826
...90....1362......43200.....1350983......43503375....1409359406...45804774819
..212....5447.....343959....21525611....1386865953...89883497849.5842759733285
..500...21816....2750576...344032061...44332944831.5748121725943
.1180...87527...22038291..5504564819.1418479860917
.2784..351510..176729972.88114108260
.6568.1412417.1417804827
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +2*a(n-3)
k=2: [order 31]
Empirical for row n:
n=1: a(n) = 2*a(n-1) +2*a(n-3)
n=2: [order 44]
EXAMPLE
Some solutions for n=4 k=4
..2..0..0..0....0..2..2..0....0..2..2..2....0..2..0..2....2..2..2..2
..0..0..0..0....0..0..2..2....2..0..2..0....0..0..2..0....0..0..0..2
..0..0..0..0....2..2..2..2....2..2..0..0....2..0..2..2....2..0..2..2
..2..0..0..0....0..2..2..0....0..2..2..2....0..0..0..0....0..0..0..0
CROSSREFS
Column 1 and row 1 are A239040
Sequence in context: A130003 A098581 A238997 * A240427 A239047 A229521
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 03 2014
STATUS
approved