

A240260


T(n,k)=Number of nXk 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4


8



3, 7, 7, 16, 26, 16, 38, 102, 89, 38, 90, 429, 707, 342, 90, 212, 1814, 5610, 5484, 1362, 212, 500, 7576, 45436, 85567, 43200, 5447, 500, 1180, 31876, 368247, 1378558, 1350983, 343959, 21816, 1180, 2784, 134302, 2999288, 22319938, 43503375
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Table starts
....3.......7.........16..........38............90...........212...........500
....7......26........102.........429..........1814..........7576.........31876
...16......89........707........5610.........45436........368247.......2999288
...38.....342.......5484.......85567.......1378558......22319938.....362690826
...90....1362......43200.....1350983......43503375....1409359406...45804774819
..212....5447.....343959....21525611....1386865953...89883497849.5842759733285
..500...21816....2750576...344032061...44332944831.5748121725943
.1180...87527...22038291..5504564819.1418479860917
.2784..351510..176729972.88114108260
.6568.1412417.1417804827


LINKS

R. H. Hardin, Table of n, a(n) for n = 1..81


FORMULA

Empirical for column k:
k=1: a(n) = 2*a(n1) +2*a(n3)
k=2: [order 31]
Empirical for row n:
n=1: a(n) = 2*a(n1) +2*a(n3)
n=2: [order 44]


EXAMPLE

Some solutions for n=4 k=4
..2..0..0..0....0..2..2..0....0..2..2..2....0..2..0..2....2..2..2..2
..0..0..0..0....0..0..2..2....2..0..2..0....0..0..2..0....0..0..0..2
..0..0..0..0....2..2..2..2....2..2..0..0....2..0..2..2....2..0..2..2
..2..0..0..0....0..2..2..0....0..2..2..2....0..0..0..0....0..0..0..0


CROSSREFS

Column 1 and row 1 are A239040
Sequence in context: A130003 A098581 A238997 * A240427 A239047 A229521
Adjacent sequences: A240257 A240258 A240259 * A240261 A240262 A240263


KEYWORD

nonn,tabl


AUTHOR

R. H. Hardin, Apr 03 2014


STATUS

approved



