login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240109
Positive integers n such that every element in the ring of integers modulo n can be written as the sum of two nonzero squares modulo n.
2
10, 13, 17, 26, 29, 30, 34, 37, 39, 41, 50, 51, 53, 58, 61, 65, 70, 73, 74, 78, 82, 85, 87, 89, 91, 97, 101, 102, 106, 109, 110, 111, 113, 119, 122, 123, 125, 130, 137, 143, 145, 146, 149, 150, 157, 159, 169, 170, 173, 174, 178, 181, 182, 183, 185, 187, 190, 193, 194, 195, 197
OFFSET
1,1
LINKS
Giovanni Resta and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 5000 terms from Giovanni Resta)
Joshua Harrington, Lenny Jones, and Alicia Lamarche, Representing integers as the sum of two squares in the ring Z_n, arXiv:1404.0187 (2014) and J. Int. Seq. 17 (2014) # 14.7.4.
EXAMPLE
13 is a member since 0=1^2+5^2, 1=2^2+6^2, 2=1^2+1^2, 3=2^2+5^2, 4=1^2+4^2, 5=1^2+2^2, 6=3^2+6^2, 7=2^2+4^2, 8=2^2+2^2, 9=5^2+6^2, 10=1^2+3^2, 11=1^2+6^2, and 12=3^2+4^2 mod 13.
5 is not a member since there are no nonzero x and y such that x^2 + y^2 = 4 (mod 5).
MATHEMATICA
ok[n_] := Block[{t = Union@ Select[Mod[ Range[n]^2, n], # > 0 &], f = Range[n] 0}, Do[ f[[1 + Mod[t[[i]] + t[[j]], n]]]++, {i, Length@t}, {j, i}]; Position[f, 0] == {}]; Select[Range[2, 200], ok] (* Giovanni Resta, Apr 01 2014 *)
PROG
(PARI) is(n)=my(f=factor(n), P=#select(k->k%4==1, f[, 1])); if(P==0, return(0)); for(i=1, #f~, if(f[i, 2]>1 && f[i, 1]%4>1, return(0))); P>1 || n%2==0 || n%5 || n%125==0 \\ Charles R Greathouse IV, Apr 04 2014
CROSSREFS
Sequence in context: A339077 A373278 A335016 * A163652 A081642 A174274
KEYWORD
nonn
AUTHOR
Lenny Jones, Mar 30 2014
STATUS
approved