login
Primes of the form m = b^i + b^j + 1, where i > j > 0, b > 1.
4

%I #19 Oct 26 2014 04:59:59

%S 7,11,13,19,31,37,41,43,67,73,97,109,131,137,151,157,193,211,223,241,

%T 271,307,421,463,521,577,601,631,641,733,739,751,757,769,811,1033,

%U 1123,1153,1303,1453,1483,1723,1741,1873,2053,2081,2113,2269,2551,2917,2971,3251,3307,3391,3541,3907,4099

%N Primes of the form m = b^i + b^j + 1, where i > j > 0, b > 1.

%C If m is a term, then there is a base b > 1 such that the base-b representation of m has digital sum = 3.

%C The base b for which m = b^i + b^j + 1 is not uniquely determined. Example: 13 = 2^3+2^2+1 = 3^2 +3^1+1.

%C Numbers m that satisfy m = b^i + b^j + 1 and b == 1 (mod 3) are not terms.

%H Hieronymus Fischer, <a href="/A239710/b239710.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1) = 7, since 7 = 2^2 + 2^1 + 1 is prime.

%e a(2) = 11, since 11 = 2^3 + 2^1 + 1 is prime.

%e a(5) = 31, since 31 = 3^3 + 3^1 + 1 is prime.

%e a(10) = 73.

%e a(100) = 24181.

%e a(10^3) = 23160157.

%e a(10^4) = 7039461703.

%e a(10^5) = 1226630453623.

%e a(10^6) = 182489744292253.

%o (Smalltalk)

%o A239710

%o "Answers the n-th term of A239710.

%o Usage: n A239710

%o Answer: a(n)"

%o ^(self primesWhichAreDistinctPowersWithOffset: 1) at: self

%o -----------

%o (Smalltalk)

%o primesWhichAreDistinctPowersWithOffset: d

%o "Answers an array which hold the first n primes of the form b^i + b^j + d, i>j>0, where n is the receiver. Iterative calculation, b > 1.

%o Usage: n primesWhichAreDistinctPowersWithOffset: d

%o Answer: all terms < n"

%o | n terms m |

%o terms := OrderedCollection new.

%o n := self.

%o m := n squared * (n integerCeilLog: 2) * 2.

%o terms := m primesLTnWhichAreDistinctPowersWithOffset: d.

%o [terms size < n] whileTrue:

%o [m := 2 * m.

%o terms := m primesLTnWhichAreDistinctPowersWithOffset: d].

%o ^(terms copyFrom: 1 to: n) asArray

%o -----------

%o (Smalltalk)

%o primesLTnWhichAreDistinctPowersWithOffset: d

%o "Answers an array which hold the primes < n of the form b^i + b^j + d, i>j>0, where n is the receiver, b > 1.

%o Uses floorDistinctPowersWithOffset: d from A242100"

%o ^(self floorDistinctPowersWithOffset: d) select: [:i | i isPrime]

%Y Cf. A239708, A239709, A239711.

%Y Cf. A242100, A239712 - A239720.

%K nonn

%O 1,1

%A _Hieronymus Fischer_, Mar 27 2014 and May 04 2014