login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238734
Log of twice the twin prime constant, C_2, log(2*A005597).
0
2, 7, 7, 8, 7, 6, 8, 8, 2, 0, 7, 3, 2, 3, 1, 9, 6, 1, 9, 3, 2, 3, 1, 0, 8, 6, 6, 7, 0, 3, 2, 5, 3, 4, 2, 0, 3, 6, 0, 2, 0, 6, 2, 9, 4, 1, 4, 7, 3, 6, 8, 2, 9, 8, 8, 2, 4, 5, 2, 7, 0, 5, 3, 3, 6, 7, 7, 1, 6, 4, 9, 8, 0, 0, 8, 2, 8, 3, 5, 0, 7, 5, 9, 9, 6, 6, 3, 7, 4, 8, 8, 4, 6, 9, 1, 0, 3, 9, 4, 1, 6, 6, 9, 8, 0, 9, 2, 9, 5, 8, 6, 6, 1
OFFSET
0,1
COMMENTS
The value occurs as term in equation (15) in the Wolf paper. - Ralf Stephan, Mar 28 2014
LINKS
Marek Wolf, Nearest-neighbor-spacing distribution of prime numbers and quantum chaos, Phys. Rev. E 89, 022922 (2014); arXiv preprint, arXiv:1212.3841 [math.NT], 2012-2014.
FORMULA
Equals log(2*A005597).
EXAMPLE
0.2778768820732319619323108667032534203602062941473682988245270533677164980...
MATHEMATICA
digits = 113;
s[n_] := (1/n)*N[Sum[MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], digits + 50];
C2 = (175/256)*Product[(Zeta[n]*(1 - 2^(-n))*(1 - 3^(-n))*(1 - 5^(-n))*(1 - 7^(-n)))^(-s[n]), {n, 2, digits + 50}];
RealDigits[Log[2 C2]][[1]][[1 ;; digits]] (* Jean-François Alcover, Feb 16 2019 *)
PROG
(PARI)
default(realprecision, 1000);
result={175/256*prod(k=2, 500, (zeta(k)*(1-1/2^k)*(1-1/3^k)*(1-1/5^k)*(1-1/7^k))^(-sumdiv(k, d, moebius(d)*2^(k/d))/k))}; log(2*result)
(PARI) log(2 * prodeulerrat(1-1/(p-1)^2, 1, 3)) \\ Amiram Eldar, Mar 16 2021
CROSSREFS
Sequence in context: A349804 A355500 A257960 * A332633 A316352 A114532
KEYWORD
nonn,cons,less
AUTHOR
John W. Nicholson, Mar 03 2014
STATUS
approved