login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238538 A fourth-order linear divisibility sequence: a(n) = (2^n + 1)*(2^(3*n) - 1)/ ( (2 + 1)*(2^3 - 1) ). 6
1, 15, 219, 3315, 51491, 811395, 12882499, 205321155, 3278747331, 52408827075, 838132189379, 13406842675395, 214483303960771, 3431523432591555, 54902699475185859, 878429788032676035, 14054769379960303811, 224875452250864496835, 3598000373385828511939 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This is a fourth-order linear divisibility sequence, that is, the sequence satisfies a linear recurrence of order 4 and if n | m then a(n) | a(m). This is a consequence of the following more general result: The polynomials P(n,x,y) := (x^n + y^n)*(x^(3*n) - y^(3*n)) form a fourth-order linear divisibility sequence in the polynomial ring Z[x,y]. See the Bala link.

Hence, for a fixed integers M and N, the normalized sequence (M^n + N^n)*(M^(3*n) - N^(3*n))/ ( (M + N)*(M^3 - N^3) ) for n = 1,2,3,... is a linear divisibility sequence of order 4. It has the rational o.g.f. x*(1 - 2*M*N*(M^2 - M*N + N^2)*x + (M*N)^4*x^2)/( (1 - M^4*x)*(1 - M^3*N*x)*(1 - M*N^3*x)*(1 - N^4*x) ). This is the case M = 2, N = 1. For other cases see A238539(M = 2, N = -1), A238540(M = 3, N = 1) and A238541(M = 3, N = 2). See also A238536, A238537 and A215466.

Note, these sequences do not belong to the family of linear divisibility sequences of the fourth order studied by Williams and Guy, which have o.g.f.s of the form x*(1 - q*x^2)/Q(x), Q(x) a quartic polynomial and q an integer parameter.

LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..831

Peter Bala, A family of linear divisibility sequences of order four

E. L. Roettger and H. C. Williams, Appearance of Primes in Fourth-Order Odd Divisibility Sequences, J. Int. Seq., Vol. 24 (2021), Article 21.7.5.

Wikipedia, Divisibility sequence

Wikipedia, Lucas Sequence

H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.

H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume

Index entries for linear recurrences with constant coefficients, signature (27,-202,432,-256).

FORMULA

a(n) = (1/21)*(2^n + 1)*(2^(3*n) - 1) = A000051(n)*A024088(n)/21.

a(n) = (1/21)*(4^n - 1)*(8^n - 1)/(2^n - 1).

O.g.f.: x*(1 - 12*x + 16*x^2)/((1 - x)*(1 - 2*x)*(1 - 8*x)*(1 - 16*x)).

Recurrence equation: a(n) = 27*a(n-1) - 202*a(n-2) + 432*a(n-4) - 256*a(n-4).

MAPLE

seq(1/21*(2^n + 1)*(2^(3*n) - 1), n = 1..20);

MATHEMATICA

LinearRecurrence[{27, -202, 432, -256}, {1, 15, 219, 3315}, 20] (* Harvey P. Dale, Jul 04 2019 *)

CROSSREFS

Cf. A215466, A236536, A236537, A238539, A238540, A238541.

Sequence in context: A020287 A152272 A091644 * A289160 A027843 A027840

Adjacent sequences:  A238535 A238536 A238537 * A238539 A238540 A238541

KEYWORD

nonn,easy

AUTHOR

Peter Bala, Feb 28 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 5 05:10 EDT 2022. Contains 355087 sequences. (Running on oeis4.)