login
A237288
Lexicographically earliest sequence of noncomposite numbers such that a(n)*n / sum(i=1..n, a(n) ) is strictly increasing.
1
1, 2, 3, 5, 7, 11, 17, 23, 31, 41, 53, 67, 83, 101, 127, 151, 179, 211, 251, 293, 337, 389, 443, 503, 569, 641, 719, 809, 907, 1009, 1117, 1229, 1361, 1493, 1637, 1787, 1949, 2129, 2309, 2503, 2707, 2917, 3137, 3371, 3613, 3877, 4153, 4441, 4751, 5059, 5381
OFFSET
1,2
COMMENTS
If we replace in name of sequence:
noncomposite numbers -> nonprime numbers, then a(n) = A103517(n-1),
noncomposite numbers -> composite numbers, then a(n) = A103517(n),
noncomposite numbers -> primes, then a(n) = A237285(n),
noncomposite numbers -> natural numbers, then a(n) = A000027(n).
EXAMPLE
For n=8: noncomposite number a(8) = 23 > a(7) = 17 is the smallest noncomposite number such that (8*23 / 69) > (7*17 / 46), a(8) is not 19 because (8*19 / (69-4)) < (7*17 / 46).
CROSSREFS
Cf. A008578 (noncomposite numbers).
Sequence in context: A267944 A113161 A038953 * A293074 A005105 A086566
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Feb 28 2014
STATUS
approved