login
A237020
Number of partitions of the 5-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes.
2
1, 5, 50, 615, 8450, 124250, 1912900, 30444385, 496856750, 8269863250, 139842071300, 2395663877750, 41489577762500, 725209189182500, 12777189397865800, 226674511923129620, 4045726807789468300, 72595935311731692500, 1308866748433105251000
OFFSET
0,2
LINKS
Yu Hin (Gary) Au, Fatemeh Bagherzadeh, Murray R. Bremner, Enumeration and Asymptotic Formulas for Rectangular Partitions of the Hypercube, arXiv:1903.00813 [math.CO], Mar 03 2019.
FORMULA
G.f. G satisfies: -x = Sum_{i=0..5} (-1)^i*C(5,i)*(G*x)^(2^(5-i)).
CROSSREFS
Column k=5 of A237018.
Sequence in context: A199762 A078244 A233068 * A156058 A232997 A357405
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 02 2014
STATUS
approved