This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A236938 Number of partitions of n such that the parts include all primes, without multiplicity, dividing n. 3
 1, 1, 1, 1, 2, 1, 1, 1, 11, 11, 3, 1, 15, 1, 7, 15, 135, 1, 101, 1, 101, 56, 30, 1, 490, 627, 56, 1575, 490, 1, 627, 1, 5604, 490, 176, 1255, 6842, 1, 297, 1255, 10143, 1, 5604, 1, 6842, 21637, 792, 1, 63261, 53174, 63261, 6842, 21637, 1, 173525, 31185, 124754 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS a(1) = 1 because the partition [1] contains all the prime factors dividing 1, i.e., none. - Giovanni Resta, Feb 04 2014 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 EXAMPLE With n = 4, 4 = 2^2.  Since 4 - (2) = 2, and the partitions of 2 are {(2), (1,1)}, the partitions of 4 that include (2) are (2, 2) and (2, 1, 1), so a(4) = 2. MAPLE with(numtheory): with(combinat): a:= n-> numbpart(n-add(f, f=factorset(n))): seq(a(n), n=0..100);  # Alois P. Heinz, Feb 04 2014 MATHEMATICA a[n_] := If[PrimeQ[n], 1, Block[{p = First /@ FactorInteger@n}, Length@ Select[ IntegerPartitions[n], Intersection[#, p] == p &]]]; Array[a, 30] (* Giovanni Resta, Feb 04 2014 *) a[n_] := PartitionsP[n-Sum[f, {f, FactorInteger[n][[All, 1]]}]]; Table[ a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *) CROSSREFS Cf. A236937, A237125. Sequence in context: A229243 A105688 A066017 * A079834 A256688 A029582 Adjacent sequences:  A236935 A236936 A236937 * A236939 A236940 A236941 KEYWORD nonn AUTHOR J. Stauduhar, Feb 03 2014 EXTENSIONS a(15)-a(56) from Giovanni Resta, Feb 04 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 26 05:42 EDT 2019. Contains 326329 sequences. (Running on oeis4.)