

A236603


Lowest canonical Gray cycles of length 2n.


2



0, 1, 0, 1, 3, 2, 0, 2, 3, 1, 5, 4, 0, 1, 3, 2, 6, 7, 5, 4, 0, 2, 3, 7, 6, 4, 5, 1, 9, 8, 0, 1, 3, 7, 5, 4, 6, 2, 10, 11, 9, 8, 0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 9, 11, 10, 8, 0, 1, 3, 2, 6, 4, 5, 7, 15, 11, 9, 13, 12, 14, 10, 8, 0, 2, 3, 7, 5, 4, 6, 14, 10, 8, 12, 13, 15, 11, 9, 1, 17, 16
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

See A236602 for definitions regarding canonical Gray sequences (CGC). The CGC's of a given length can be sorted 'lexically'; for example, the CGC {0 1 5 4 6 7 3 2} precedes {0 1 5 7 3 2 6 4}. This sequence is then the flattened triangular table of the terms of the lowest CGC for each even length L, where L = 2*<row index>.
Note: zero unequivocally marks the start of each CGC.


LINKS

Stanislav Sykora, Table of n, a(n) for n = 1..306
Stanislav Sykora, Triangle for A236603
Sykora S., On Canonical Gray Cycles, Stan's Library, Vol.V, January 2014, DOI: 10.3247/SL5Math14.001.


EXAMPLE

L CGC
2 0, 1
4 0, 1, 3, 2
6 0, 2, 3, 1, 5, 4
8 0, 1, 3, 2, 6, 7, 5, 4
10 0, 2, 3, 7, 6, 4, 5, 1, 9, 8


CROSSREFS

Cf. A236602(CGC counts)
Sequence in context: A281451 A246863 A227864 * A129576 A122861 A277097
Adjacent sequences: A236600 A236601 A236602 * A236604 A236605 A236606


KEYWORD

nonn,tabf,hard


AUTHOR

Stanislav Sykora, Feb 01 2014


STATUS

approved



