login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A235542 Number of (n+1)X(2+1) 0..1 arrays with the sum of each 2X2 subblock two median terms lexicographically nondecreasing rowwise and columnwise 1
48, 222, 1049, 4348, 17658, 67012, 247639, 880814, 3061429, 10385988, 34604232, 113376954, 366386257, 1169544994, 3694214596, 11560700652, 35884753502, 110586677426, 338628074707, 1031035016352, 3123343642588, 9418695537368 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 2 of A235548

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 12*a(n-1) -48*a(n-2) +26*a(n-3) +319*a(n-4) -694*a(n-5) -524*a(n-6) +2932*a(n-7) -875*a(n-8) -5880*a(n-9) +4552*a(n-10) +6378*a(n-11) -7363*a(n-12) -3518*a(n-13) +6068*a(n-14) +520*a(n-15) -2576*a(n-16) +352*a(n-17) +448*a(n-18) -128*a(n-19)

EXAMPLE

Some solutions for n=5

..1..0..1....0..1..1....1..0..0....1..0..0....0..0..1....0..1..0....1..0..0

..0..1..0....0..1..0....0..0..1....0..0..1....0..1..0....0..0..1....0..0..0

..1..0..1....0..1..1....0..1..1....1..1..0....1..0..1....1..0..1....1..0..0

..1..0..1....1..0..1....0..1..1....1..1..1....0..1..0....0..1..1....0..0..1

..0..1..1....1..1..0....1..1..1....0..1..1....1..1..1....0..1..0....0..1..1

..1..1..1....1..1..1....1..1..0....1..1..1....1..0..1....1..1..1....0..1..0

CROSSREFS

Sequence in context: A235759 A062248 A100146 * A269014 A265422 A211729

Adjacent sequences:  A235539 A235540 A235541 * A235543 A235544 A235545

KEYWORD

nonn

AUTHOR

R. H. Hardin, Jan 12 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 21:59 EST 2019. Contains 320328 sequences. (Running on oeis4.)