%I #10 Jun 19 2022 01:09:41
%S 408,2628,16848,109224,704160,4594320,29782080,195532704,1274237568,
%T 8416415808,55124437248,366185867904,2409750673920,16093719394560,
%U 106373608473600,713965515692544,4738136283260928,31947371388453888
%N Number of (n+1) X (1+1) 0..7 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 5 (constant-stress 1 X 1 tilings).
%H R. H. Hardin, <a href="/A234697/b234697.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 6*a(n-1) + 90*a(n-2) - 540*a(n-3) - 2016*a(n-4) + 12096*a(n-5).
%F Empirical g.f.: 12*x*(34 + 15*x - 2970*x^2 - 672*x^3 + 64512*x^4) / ((1 - 6*x)*(1 - 42*x^2)*(1 - 48*x^2)). - _Colin Barker_, Oct 16 2018
%e Some solutions for n=4:
%e 7 7 7 2 7 2 5 4 5 2 1 7 4 0 2 5 4 3 6 0
%e 0 5 0 0 7 7 3 7 0 2 0 1 6 7 5 3 0 4 1 0
%e 7 7 6 1 2 7 7 6 6 3 4 0 0 6 1 4 1 0 2 6
%e 5 0 5 5 0 0 3 7 1 3 0 1 5 6 6 4 3 7 6 5
%e 7 7 1 6 6 1 5 4 7 4 5 1 4 0 0 3 7 6 0 4
%Y Column 1 of A234702.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 29 2013