login
A234323
Number of nontrivial zeros of the Riemann zeta function in the interval 1/2 + i[n,n+1).
8
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0
OFFSET
1
COMMENTS
It gives the number of zeros for each integer.
The average value is a(n) ~ log(n)/(2*Pi).
LINKS
Simon Plouffe, Table for a(n) up to 2 billion - note the file is 25 gigabytes uncompressed
EXAMPLE
First zero is at 14.134, therefore a(14) = 1, the second is at 21.022 therefore a(21) = 1, there are 2 zeros between 111 and 112, a(111) = 2.
PROG
(PARI) #lfunzeros(lzeta, [n, n+1]) \\ Charles R Greathouse IV, Mar 10 2016
CROSSREFS
Sequence in context: A297043 A355451 A133010 * A162782 A011727 A297042
KEYWORD
nonn
AUTHOR
Simon Plouffe, Dec 23 2013
STATUS
approved