login
A234217
T(n,k)=Number of (n+1)X(k+1) 0..4 arrays with every 2X2 subblock having the sum of the squares of all six edge and diagonal differences equal to 11 (11 maximizes T(1,1))
9
72, 308, 308, 1248, 1540, 1248, 5344, 7348, 7348, 5344, 21888, 38424, 40384, 38424, 21888, 93760, 190188, 257116, 257116, 190188, 93760, 385536, 1029224, 1493960, 2047712, 1493960, 1029224, 385536, 1651712, 5219076, 10151836, 14743812
OFFSET
1,1
COMMENTS
Table starts
.......72.......308........1248.........5344..........21888...........93760
......308......1540........7348........38424.........190188.........1029224
.....1248......7348.......40384.......257116........1493960........10151836
.....5344.....38424......257116......2047712.......14743812.......128575264
....21888....190188.....1493960.....14743812......125726800......1394066584
....93760...1029224....10151836....128575264.....1394066584.....20127064876
...385536...5219076....61124816....972664988....12541330624....232097384988
..1651712..28931288...436731604...9139171016...154402398572...3785005344428
..6801408.148987468..2691478528..71474160448..1438786785176..45442038074040
.29139968.838864504.19921334892.709190594872.19244558737744.819238398602984
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 24*a(n-2) -112*a(n-4)
k=2: [order 15]
k=3: [order 56]
EXAMPLE
Some solutions for n=3 k=4
..1..0..1..0..2....0..1..0..2..1....0..2..2..0..0....0..2..3..2..0
..2..0..2..2..1....0..2..0..1..3....1..0..1..2..1....0..1..1..1..2
..1..0..1..0..0....2..1..2..2..3....2..2..0..2..0....0..2..3..2..0
..0..2..2..2..1....3..1..3..4..2....0..1..2..1..0....1..2..4..2..1
CROSSREFS
Sequence in context: A277430 A277991 A205627 * A234210 A157909 A107314
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 21 2013
STATUS
approved