login
A234122
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every 2X2 subblock having the absolute values of all six edge and diagonal differences no larger than 1
8
31, 145, 145, 673, 1361, 673, 3127, 12593, 12593, 3127, 14527, 116801, 231713, 116801, 14527, 67489, 1082977, 4279065, 4279065, 1082977, 67489, 313537, 10041953, 79003521, 157630963, 79003521, 10041953, 313537, 1456615, 93113761
OFFSET
1,1
COMMENTS
Table starts
.......31.........145.............673...............3127.................14527
......145........1361...........12593.............116801...............1082977
......673.......12593..........231713............4279065..............79003521
.....3127......116801.........4279065..........157630963............5807422543
....14527.....1082977........79003521.........5807422543..........427196005695
....67489....10041953......1458813409.......214027901025........31446640848897
...313537....93113761.....26937444801......7888454356625......2315408571668225
..1456615...863396401....497411686793....290756314787875....170502665692732079
..6767071..8005833073...9184935953377..10716964158533127..12556134956123911615
.31438129.74233997105.169604155276817.395017615132720993.924677153131389366689
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) +3*a(n-2)
k=2: a(n) = 10*a(n-1) -4*a(n-2) -26*a(n-3) +5*a(n-4)
k=3: a(n) = 20*a(n-1) -10*a(n-2) -324*a(n-3) -277*a(n-4) +144*a(n-5)
k=4: [order 11]
k=5: [order 17]
k=6: [order 35]
k=7: [order 62]
EXAMPLE
Some solutions for n=2 k=4
..0..1..0..0..1....0..1..2..2..2....1..2..1..2..2....0..1..0..1..2
..1..0..1..0..1....1..1..1..1..2....1..2..2..2..2....1..0..0..1..2
..1..1..0..0..1....1..2..2..1..2....2..1..1..1..2....0..1..0..1..1
CROSSREFS
Column 1 is A086901(n+3)
Sequence in context: A185521 A228261 A185513 * A142758 A124994 A126418
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 19 2013
STATUS
approved