%I #9 Oct 12 2018 08:29:28
%S 144,656,2688,12288,51200,233984,987136,4503552,19185664,87351296,
%T 375062528,1704296448,7364935680,33408548864,145134452736,
%U 657383227392,2868195098624,12975463202816,56813072416768,256757263761408
%N Number of (n+1) X (1+1) 0..6 arrays with every 2 X 2 subblock having the sum of the squares of all six edge and diagonal differences equal to 35.
%H R. H. Hardin, <a href="/A233897/b233897.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 44*a(n-2) - 608*a(n-4) + 2560*a(n-6).
%F Empirical g.f.: 16*x*(9 + 41*x - 228*x^2 - 1036*x^3 + 1280*x^4 + 5760*x^5) / ((1 - 4*x)*(1 + 4*x)*(1 - 8*x^2)*(1 - 20*x^2)). - _Colin Barker_, Oct 12 2018
%e Some solutions for n=5:
%e ..4..1....3..4....1..3....2..1....5..4....1..4....3..1....2..3....1..5....1..3
%e ..0..2....5..1....2..5....3..5....2..6....3..5....5..4....0..4....4..3....5..4
%e ..1..4....4..3....3..1....2..1....4..5....1..2....2..6....1..2....5..1....2..6
%e ..5..3....0..2....4..5....5..3....1..3....3..5....4..3....3..5....3..2....4..3
%e ..1..2....4..3....2..6....2..1....5..4....1..4....2..0....4..1....4..6....6..2
%e ..5..3....0..2....5..4....4..0....2..6....0..2....1..4....5..3....5..2....4..3
%Y Column 1 of A233903.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 17 2013