This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A233457 Values of n for which the equation x^2 - 16*y^2 = n has integer solutions. 1
 0, 1, 4, 9, 16, 17, 20, 25, 33, 36, 41, 48, 49, 52, 57, 64, 65, 68, 73, 80, 81, 84, 89, 97, 100, 105, 112, 113, 116, 121, 128, 129, 132, 137, 144, 145, 148, 153, 161, 164, 169, 176, 177, 180, 185, 192, 193, 196, 201, 208, 209, 212, 217, 225, 228, 233, 240 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS This equation is a Pellian equation of the form x^2 - D^2*y^2 = N. LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1). FORMULA G.f.: x^2*(x +1)*(7*x^3 +5*x^2 +3*x +1)*(x^4 +1)*(x^6 -x^5 +x^4 -x^3 +x^2 -x +1) / ((x -1)^2*(x^2 +x +1)*(x^4 +x^3 +x^2 +x +1)*(x^8 -x^7 +x^5 -x^4 +x^3 -x +1)). EXAMPLE 33 is in the sequence because the equation x^2 - 16*y^2 = 33 has solutions (X,Y) = (7,1) and (17,4). MATHEMATICA LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {0, 1, 4, 9, 16, 17, 20, 25, 33, 36, 41, 48, 49, 52, 57, 64}, 60] (* Harvey P. Dale, Sep 06 2014 *) PROG (PARI) concat(0, Vec((7*x^15 +5*x^14 +3*x^13 +x^12 +7*x^11 +5*x^10 +3*x^9 +8*x^8 +5*x^7 +3*x^6 +x^5 +7*x^4 +5*x^3 +3*x^2 +x)/(x^16 -x^15 -x +1) + O(x^100))) CROSSREFS Cf. A042965, A230239, A230240. Sequence in context: A080819 A313309 A313310 * A313311 A313312 A313313 Adjacent sequences:  A233454 A233455 A233456 * A233458 A233459 A233460 KEYWORD nonn,easy AUTHOR Colin Barker, Mar 18 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 14:42 EDT 2019. Contains 322209 sequences. (Running on oeis4.)