%I #6 Nov 22 2013 09:55:51
%S 2,5,5,16,24,13,52,139,115,34,169,853,1202,551,89,549,5241,14042,
%T 10409,2640,233,1784,32089,164014,231454,90157,12649,610,5797,196698,
%U 1905436,5142441,3815483,780922,60605,1597,18837,1205422,22161823,113293694
%N T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every element equal to some horizontal or antidiagonal neighbor, with top left element zero
%C Table starts
%C .....2.......5.........16............52..............169.................549
%C .....5......24........139...........853.............5241...............32089
%C ....13.....115.......1202.........14042...........164014.............1905436
%C ....34.....551......10409........231454..........5142441...........113293694
%C ....89....2640......90157.......3815483........161243887..........6736602042
%C ...233...12649.....780922......62897985.......5055954492........400571676322
%C ...610...60605....6764246....1036869496.....158534446141......23818815015639
%C ..1597..290376...58591124...17092731689....4971005036586....1416315842358249
%C ..4181.1391275..507509767..281772661177..155870804492221...84217060496525106
%C .10946.6665999.4395993154.4645005493684.4887484036570530.5007720081104988709
%H R. H. Hardin, <a href="/A232316/b232316.txt">Table of n, a(n) for n = 1..390</a>
%F Empirical for column k:
%F k=1: a(n) = 3*a(n-1) -a(n-2)
%F k=2: a(n) = 5*a(n-1) -a(n-2)
%F k=3: a(n) = 10*a(n-1) -11*a(n-2) -5*a(n-3) -a(n-4)
%F k=4: a(n) = 19*a(n-1) -44*a(n-2) +43*a(n-3) -19*a(n-4) +4*a(n-5) -2*a(n-6) for n>7
%F k=5: [order 12] for n>13
%F k=6: [order 18] for n>20
%F k=7: [order 37] for n>40
%F Empirical for row n:
%F n=1: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4) for n>5
%F n=2: [order 12] for n>14
%F n=3: [order 32] for n>34
%F n=4: [order 78] for n>82
%e Some.solutions.for.n=3.k=4
%e ..0..0..0..1..1....0..0..1..1..0....0..0..0..1..1....0..0..1..1..0
%e ..0..0..1..1..1....0..1..1..0..0....0..0..0..1..1....0..1..1..0..1
%e ..1..1..0..0..0....1..0..0..1..1....0..0..1..1..1....0..0..0..1..0
%e ..1..1..1..1..1....1..1..1..0..0....0..0..0..0..0....1..1..1..0..0
%Y Column 1 is A001519(n+1)
%Y Column 2 is A004254(n+1)
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Nov 22 2013