login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231515
T(n,k)=Number of nXk 0..1 arrays with no element less than a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors
8
2, 2, 2, 4, 6, 4, 7, 14, 14, 7, 12, 35, 78, 35, 12, 21, 90, 343, 343, 90, 21, 37, 225, 1537, 2594, 1537, 225, 37, 65, 569, 7505, 19435, 19435, 7505, 569, 65, 114, 1441, 35872, 158061, 256846, 158061, 35872, 1441, 114, 200, 3640, 168887, 1275558, 3691558
OFFSET
1,1
COMMENTS
Table starts
...2....2.......4.........7...........12.............21...............37
...2....6......14........35...........90............225..............569
...4...14......78.......343.........1537...........7505............35872
...7...35.....343......2594........19435.........158061..........1275558
..12...90....1537.....19435.......256846........3691558.........51741521
..21..225....7505....158061......3691558.......97188562.......2438335793
..37..569...35872...1275558.....51741521.....2438335793.....108221463798
..65.1441..168887..10130742....714951561....59978232085....4680280632866
.114.3640..800573..80645991...9949033842..1495872774439..205954365382497
.200.9208.3806573.644138583.138737920339.37400468849958.9095707696345723
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3) for n>4
k=2: a(n) = 2*a(n-1) +a(n-2) +3*a(n-3) -4*a(n-4) -2*a(n-5) -4*a(n-6)
k=3: [order 16] for n>17
k=4: [order 34] for n>35
EXAMPLE
Some solutions for n=4 k=4
..1..1..1..0....1..0..0..0....0..0..1..0....1..0..0..0....0..0..0..1
..1..1..0..0....1..0..0..1....0..0..0..0....0..0..0..0....1..0..0..1
..0..0..0..1....0..0..1..1....1..0..1..0....1..0..0..0....1..0..0..0
..0..0..0..0....0..0..1..1....0..0..0..0....1..1..0..0....1..1..0..1
CROSSREFS
Column 1 is A005251(n+2)
Sequence in context: A342271 A240433 A217637 * A231544 A086420 A328106
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 09 2013
STATUS
approved