login
A231515
T(n,k)=Number of nXk 0..1 arrays with no element less than a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors
8
2, 2, 2, 4, 6, 4, 7, 14, 14, 7, 12, 35, 78, 35, 12, 21, 90, 343, 343, 90, 21, 37, 225, 1537, 2594, 1537, 225, 37, 65, 569, 7505, 19435, 19435, 7505, 569, 65, 114, 1441, 35872, 158061, 256846, 158061, 35872, 1441, 114, 200, 3640, 168887, 1275558, 3691558
OFFSET
1,1
COMMENTS
Table starts
...2....2.......4.........7...........12.............21...............37
...2....6......14........35...........90............225..............569
...4...14......78.......343.........1537...........7505............35872
...7...35.....343......2594........19435.........158061..........1275558
..12...90....1537.....19435.......256846........3691558.........51741521
..21..225....7505....158061......3691558.......97188562.......2438335793
..37..569...35872...1275558.....51741521.....2438335793.....108221463798
..65.1441..168887..10130742....714951561....59978232085....4680280632866
.114.3640..800573..80645991...9949033842..1495872774439..205954365382497
.200.9208.3806573.644138583.138737920339.37400468849958.9095707696345723
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3) for n>4
k=2: a(n) = 2*a(n-1) +a(n-2) +3*a(n-3) -4*a(n-4) -2*a(n-5) -4*a(n-6)
k=3: [order 16] for n>17
k=4: [order 34] for n>35
EXAMPLE
Some solutions for n=4 k=4
..1..1..1..0....1..0..0..0....0..0..1..0....1..0..0..0....0..0..0..1
..1..1..0..0....1..0..0..1....0..0..0..0....0..0..0..0....1..0..0..1
..0..0..0..1....0..0..1..1....1..0..1..0....1..0..0..0....1..0..0..0
..0..0..0..0....0..0..1..1....0..0..0..0....1..1..0..0....1..1..0..1
CROSSREFS
Column 1 is A005251(n+2)
Sequence in context: A342271 A240433 A217637 * A231544 A086420 A328106
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 09 2013
STATUS
approved