%I #4 Nov 05 2013 18:33:19
%S 3,8,21,54,185,552,1799,5900,19185,63834,210899,701724,2336721,
%T 7786742,25984043,86721124,289569291,967130226,3230474181,10792263708,
%U 36056118433,120467821634,402509354825,1344900626136,4493772713417
%N Number of (n+2)X(3+2) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order
%C Column 3 of A231227
%H R. H. Hardin, <a href="/A231222/b231222.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-1) +8*a(n-2) -18*a(n-3) -31*a(n-4) +39*a(n-5) +49*a(n-6) -73*a(n-7) +64*a(n-8) +15*a(n-9) -157*a(n-10) +98*a(n-11) +28*a(n-12) -24*a(n-13)
%e Some solutions for n=4
%e ..0..0..0..0..0....0..0..1..1..1....0..0..0..1..1....0..0..1..1..1
%e ..0..0..0..0..0....0..0..1..1..1....0..0..0..1..1....0..0..1..1..1
%e ..1..1..1..1..1....1..1..0..0..0....0..0..0..1..1....0..0..0..1..1
%e ..1..1..1..1..1....1..1..0..0..0....1..1..1..0..0....0..0..0..2..2
%e ..0..0..0..0..0....1..1..0..0..0....1..1..1..0..0....0..0..2..2..2
%e ..0..0..0..0..0....1..1..0..0..0....1..1..1..0..0....0..0..2..2..2
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 05 2013