login
A231131
T(n,k)=Number of (n+1)X(k+1) white-square subarrays of 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order
8
1, 2, 2, 6, 8, 6, 16, 40, 40, 16, 44, 176, 308, 176, 44, 120, 808, 2260, 2260, 808, 120, 328, 3584, 16812, 27664, 16812, 3584, 328, 896, 16368, 124644, 336004, 336004, 124644, 16368, 896, 2448, 72640, 924900, 4150352, 6794904, 4150352, 924900, 72640, 2448
OFFSET
1,2
COMMENTS
Table starts
..1...2.....6.....16......44.......120........328.........896..........2448
..2...8....40....176.....808......3584......16368.......72640........331648
..6..40...308...2260...16812....124644.....924900.....6862052......50913012
.16.176..2260..27664..336004...4150352...50257244...621150768....7520563372
.44.808.16812.336004.6794904.137063228.2766762720.55844298404.1127200291672
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +2*a(n-2)
k=2: a(n) = 22*a(n-2) -36*a(n-4) +16*a(n-6)
k=3: [order 8]
k=4: [order 18, even terms]
k=5: [order 34]
k=6: [order 90, even terms]
EXAMPLE
Some solutions for n=2 k=4
..0..x..1..x..1....0..x..0..x..1....0..x..1..x..0....0..x..0..x..1
..x..1..x..2..x....x..1..x..0..x....x..1..x..2..x....x..1..x..2..x
..2..x..2..x..1....2..x..1..x..1....0..x..0..x..0....0..x..2..x..1
CROSSREFS
Column 1 is A002605
Sequence in context: A306688 A092522 A116542 * A142243 A269722 A091441
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 04 2013
STATUS
approved