This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2017 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A231095 Decimal expansion of the power tower of Euler constant gamma. 4
 6, 8, 5, 9, 4, 7, 0, 3, 5, 1, 6, 7, 4, 2, 8, 4, 8, 1, 8, 7, 5, 7, 3, 5, 9, 6, 1, 9, 8, 0, 4, 1, 7, 3, 5, 8, 7, 4, 8, 8, 6, 2, 1, 4, 1, 8, 7, 0, 3, 0, 1, 5, 0, 6, 7, 0, 1, 8, 6, 6, 8, 5, 8, 1, 7, 0, 3, 0, 1, 8, 7, 6, 7, 1, 4, 6, 9, 5, 7, 3, 8, 5, 6, 1, 7, 8, 3, 7, 3, 7, 0, 1, 6, 5, 9, 1, 1, 1, 0, 4, 8, 9, 1, 5, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Stanislav Sykora, Table of n, a(n) for n = 0..2000 Wikipedia, Euler-Mascheroni constant Wikipedia, Lambert W function Wikipedia, Tetration FORMULA In general, for 1/E^E <= c < 1, c^c^c^... = LambertW(log(1/c))/log(1/c). Hence, this number is LambertW(log(1/gamma))/log(1/gamma). EXAMPLE 0.685947035167428481875735 ... MAPLE evalf(-LambertW(-log(gamma))/log(gamma), 120); # Vaclav Kotesovec, Oct 26 2014 MATHEMATICA c = EulerGamma; RealDigits[ ProductLog[-Log[c]]/Log[c], 10, 111] (* Robert G. Wilson v, Oct 24 2014 *) PROG (PARI) -lambertw(-log(Euler))/log(Euler) CROSSREFS Cf. A001620. Sequence in context: A030644 A319032 A073462 * A201195 A266092 A143627 Adjacent sequences:  A231092 A231093 A231094 * A231096 A231097 A231098 KEYWORD nonn,cons AUTHOR Stanislav Sykora, Nov 03 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 13:02 EST 2018. Contains 318048 sequences. (Running on oeis4.)