%I #13 Jul 07 2020 15:49:24
%S 1,3,6,11,18,28,40,54,71,90,112,137,165,196,232,270,311,355,402,454,
%T 509,569,633,698,765,835,908,984,1063,1147,1234,1326,1422,1520,1621,
%U 1726,1835,1949,2067,2190,2319,2450,2584,2721,2861,3004,3152,3303,3459,3619
%N Partial sums of A010062.
%H Robert Israel, <a href="/A230088/b230088.txt">Table of n, a(n) for n = 0..10000</a>
%H Kenneth B. Stolarsky, <a href="http://dx.doi.org/10.1090/S0002-9939-1976-0409340-X">The sum of a digitaddition series</a>, Proc. Amer. Math. Soc. 59 (1976), no. 1, 1--5. MR0409340 (53 #13099).
%F a(n) ~ (n^2/4)*log_2(n). [Stolarsky]
%p f:= proc(n) option remember;
%p procname(n-1)+convert(convert(procname(n-1),base,2),`+`)
%p end proc:
%p f(0):= 1:
%p g:= proc(n) option remember;
%p procname(n-1)+f(n)
%p end proc:
%p g(0):= 1:
%p map(g, [$0..100]); # _Robert Israel_, Jul 07 2020
%o (PARI) lista(nn) = {a = 1;sa = 0; for (n=2, nn, sa += a; print1(sa, ", "); a += hammingweight(a););} \\ _Michel Marcus_, Apr 04 2015
%Y Cf. A010062.
%K nonn,base
%O 0,2
%A _N. J. A. Sloane_, Oct 08 2013
%E More terms from _Michel Marcus_, Apr 04 2015