login
T(n,k)=Number of n X n 0..k arrays with rows and columns in lexicographically nondecreasing order
7

%I #6 Dec 18 2015 18:18:42

%S 2,3,7,4,29,45,5,86,1169,650,6,205,14178,250841,24520,7,421,102251,

%T 21907055,318174607,2625117,8,777,520017,733861607,348053502590,

%U 2533164987353,836488618,9,1324,2066505,13111482259,83399309397669

%N T(n,k)=Number of n X n 0..k arrays with rows and columns in lexicographically nondecreasing order

%C Table starts

%C .....2.........3............4..............5................6

%C .....7........29...........86............205..............421

%C ....45......1169........14178.........102251...........520017

%C ...650....250841.....21907055......733861607......13111482259

%C .24520.318174607.348053502590.83399309397669.7470491620551006

%H R. H. Hardin, <a href="/A229794/b229794.txt">Table of n, a(n) for n = 1..63</a>

%F Empirical for row n:

%F n=1: a(n) = 1*n + 1

%F n=2: a(n) = (1/3)*n^4 + (7/6)*n^3 + (13/6)*n^2 + (7/3)*n + 1

%F n=3: [polynomial of degree 9]

%F n=4: [polynomial of degree 16]

%e Some solutions for n=2 k=4

%e ..1..4....1..3....1..4....0..3....1..4....2..4....1..4....0..3....0..1....0..3

%e ..2..3....3..2....4..0....1..1....2..0....4..2....3..2....2..1....0..1....4..4

%Y Column 1 is A089006

%Y Column 2 is A162085

%Y Column 3 is A162086

%Y Column 4 is A162087

%Y Column 5 is A162088

%Y Column 6 is A162089

%Y Column 7 is A162090

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Sep 29 2013