login
A229058
Primes p where the digital sum of p^2 is equal to 25.
2
67, 113, 157, 193, 257, 283, 311, 337, 373, 409, 419, 463, 509, 599, 643, 653, 661, 743, 761, 769, 797, 1013, 1031, 1039, 1103, 1129, 1193, 1237, 1301, 1381, 1399, 1427, 1471, 1481, 1553, 1571, 1579, 1597, 1733, 1759, 1823, 1831, 1877, 2029, 2039, 2111, 2129
OFFSET
1,1
COMMENTS
From Bruno Berselli, Sep 12 2013: (Start)
Primes q such that the digital sum of q^2 is 1 < k < 50:
k | q
---|------------
4 | 2, 11, 101;
7 | A226803;
9 | 3;
10 | A226802;
13 | A165492;
16 | A165459;
19 | A165493;
22 | 43, 97, 191, 227, 241, 317, 331, 353, ... ;
25 | this sequence;
28 | 163, 197, 233, 307, 359, 397, 431, 467, ... ;
31 | A165502;
34 | 167, 293, 383, 563, 607, 617, 733, 787, ... ;
37 | A165504;
40 | 313, 947, 983, 1303, 1483, 1609, 1663, ... ;
43 | A165504;
46 | 883, 937, 1367, 1637, 2213, 2447, 2683, ... ;
49 | 1667, 2383, 2437, 2617, 2963, 4219, 4457, ... . (End)
LINKS
MATHEMATICA
Select[Prime[Range[400]], Total[IntegerDigits[#^2]] == 25 &]
PROG
(Magma) [p: p in PrimesUpTo(2600) | &+Intseq(p^2) eq 25];
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Sep 12 2013
STATUS
approved