login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A228907 G.f. satisfies: A(x) = Sum_{n>=0} x^n * (1 - A(x)^(2*n))/(1 - A(x)). 1
1, 2, 6, 24, 114, 598, 3336, 19402, 116302, 713368, 4455650, 28240942, 181180912, 1174280146, 7677229718, 50570040088, 335289825874, 2235856077798, 14985808827416, 100900119437082, 682145490613118, 4628755102582328, 31514118237222850, 215214456560655070 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.

FORMULA

G.f. satisfies: A(x) = 1 + x*A(x)*(2 - A(x) + A(x)^2) + x^2*A(x)^2*(1 - A(x)).

G.f.: (1/x)*Series_Reversion( x*(1+x+x^2 + sqrt(1-2*x-5*x^2-2*x^3+x^4)) / (2*(1+x)^2) ).

Recurrence: n*(2*n+1)*(7*n^2 - 35*n + 34)*a(n) = (126*n^4 - 742*n^3 + 1193*n^2 - 601*n + 78)*a(n-1) - (182*n^4 - 1253*n^3 + 2788*n^2 - 2293*n + 450)*a(n-2) + (56*n^4 - 434*n^3 + 1189*n^2 - 1273*n + 318)*a(n-3) + (n-4)*(2*n-5)*(7*n^2 - 21*n + 6)*a(n-4). - Vaclav Kotesovec, Sep 09 2013

a(n) ~ c*d^n/n^(3/2), where d = 8/3+14/3*cos(arctan(3*sqrt(3)/13)/3) = 7.29589694323977237... is the root of the equation 1 + 5*d - 8*d^2 + d^3 = 0 and c = 0.33910585091755684322274547... - Vaclav Kotesovec, Sep 09 2013

EXAMPLE

G.f.: A(x) = 1 + 2*x + 6*x^2 + 24*x^3 + 114*x^4 + 598*x^5 + 3336*x^6 +...

where g.f. A = A(x) satisfies the equivalent expressions:

A = 1 + x*(1-A^2)/(1-A) + x^2*(1-A^4)/(1-A) + x^3*(1-A^6)/(1-A) +...

A = 1 + x*(1 + A) + x^2*(1 + A + A^2 + A^3) + x^3*(1 + A + A^2 + A^3 + A^4 + A^5) +...

MATHEMATICA

nmax=20; aa=ConstantArray[0, nmax]; aa[[1]]=2; Do[AGF=1+Sum[aa[[n]]*x^n, {n, 1, j-1}]+koef*x^j; sol=Solve[Coefficient[1+x*AGF*(2-AGF+AGF^2)+x^2*AGF^2*(1-AGF)-AGF, x, j]==0, koef][[1]]; aa[[j]]=koef/.sol[[1]], {j, 2, nmax}]; Flatten[{1, aa}] (* Vaclav Kotesovec, Sep 09 2013 *)

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*sum(k=0, 2*m-1, A^k)+x*O(x^n))); polcoeff(A, n)}

for(n=0, 25, print1(a(n), ", "))

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*A*(2-A+A^2)+x^2*A^2*(1-A)+x*O(x^n)); polcoeff(A, n)}

for(n=0, 25, print1(a(n), ", "))

CROSSREFS

Cf. A199548.

Sequence in context: A216716 A192088 A245233 * A209625 A054872 A134664

Adjacent sequences:  A228904 A228905 A228906 * A228908 A228909 A228910

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Sep 08 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 04:44 EST 2019. Contains 329248 sequences. (Running on oeis4.)