login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228580
y-values in the solution to the Pell equation x^2 - 106*y^2 = -1.
2
389, 24958279289, 1601325744926727089, 102741223129724767598123789, 6591887355607898719696172384139389, 422936165108312951120152699451198782333889, 27135627492838193399902655844465538200645732157289
OFFSET
1,1
COMMENTS
All terms are multiples of 389.
FORMULA
a(n) = 64160102*a(n-1)-a(n-2).
G.f.: -389*x*(x-1) / (x^2-64160102*x+1).
MATHEMATICA
LinearRecurrence[{64160102, -1}, {389, 24958279289}, 20] (* or *) With[ {c1= 32080051-3115890Sqrt[106], c2 =32080051+3115890Sqrt[106]}, Table[ (41234c1^n+ 4005Sqrt[106] c1^n+41234c2^n-4005Sqrt[106] c2^n)/212, {n, 10}]]//Simplify (* Harvey P. Dale, Mar 02 2019 *)
PROG
(PARI) Vec(-389*x*(x-1)/(x^2-64160102*x+1) + O(x^30))
CROSSREFS
Cf. A228579 gives the corresponding x-values.
Sequence in context: A378695 A299719 A300340 * A242182 A136153 A379532
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Aug 26 2013
STATUS
approved