login
A228490
Numbers k for which prime(1) + ... + prime(k) = 2*prime(m) for some m.
1
3, 7, 55, 59, 65, 75, 93, 133, 137, 141, 249, 277, 313, 365, 375, 387, 391, 435, 471, 499, 563, 573, 597, 605, 619, 645, 675, 719, 787, 797, 799, 815, 825, 845, 867, 879, 919, 937, 957, 971, 1011, 1013, 1145, 1217, 1225, 1243, 1251, 1271, 1283, 1311, 1373
OFFSET
1,1
EXAMPLE
a(1) = 3 because 2 + 3 + 5 = 2*prime(3) and p(3) = 5 is the least such prime summand.
MATHEMATICA
z = 2800; f[n_] := Sum[Prime[k], {k, 1, n}]; p[n_] := If[PrimeQ[f[n]/2], 1, 0]; t = Table[p[n], {n, 1, z}]; Flatten[Position[t, 1]]
CROSSREFS
Sequence in context: A095124 A204254 A144030 * A130294 A321968 A100772
KEYWORD
nonn
AUTHOR
Clark Kimberling, Oct 01 2013
STATUS
approved