login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228021
Prime(k) such that 2^(k - 1) + prime(k) is also prime.
1
2, 3, 29, 89, 251, 659, 937, 1307, 1453, 8179, 9391, 12097, 28499, 83969, 101209, 120739
OFFSET
1,1
COMMENTS
The primes indices k are 1, 2, 10, 24, 54, 120, 159, 214, 231, 1027, 1161, 1447, 3100, 8188, 9695, 11363 ...
The corresponding primes 2^(k - 1) + prime(k) are 3, 5, 541, 8388697,...
EXAMPLE
29 is in the sequence because 29 = prime(10) and 2^(10 - 1) + 29 = 512 + 29 = 541 is prime.
MAPLE
for i from 1 do
p := ithprime(i) ;
if isprime(p+2^(i-1)) then
printf("%d, \n", p) ;
end if;
end do: # R. J. Mathar, Jul 12 2014
MATHEMATICA
p = 2; lst = {}; While[p < 730001, If[ PrimeQ[ 2^(PrimePi@ p-1) + p], AppendTo[lst, p]; Print@ p]; p = NextPrime@ p]; lst (* Robert G. Wilson v, Jul 09 2014 *)
PROG
(PARI) lista(nn) = {ip = 1; forprime(p=2, nn, if (isprime(2^(ip-1)+p), print1(p, ", ")); ip++; ); } \\ Michel Marcus, Jul 12 2014
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
EXTENSIONS
a(3) - a(9) from _Olivier Gérard_, Aug 01 2013
a(10) - a(15) from Robert G. Wilson v, Aug 01 2013
a(16) from Robert G. Wilson v, Jul 09 2014
STATUS
approved