login
A227914
Length of longest chain of nonempty proper subsemigroups of the symmetric inverse monoid.
4
1, 6, 25, 116, 722, 5956, 59243, 667500, 8296060, 112406158, 1648441865, 26016230581, 439698829588, 7923291500266, 151636272041063, 3071397457222772, 65637064987470128, 1475783903907314842, 34822081020977308581, 860290584362463964031, 22206678791494395506940, 597775158911764084886982, 16751152450234618859184419, 487867395080603697285978385, 14745549219503008426659528806
OFFSET
1,2
LINKS
P. J. Cameron, M. Gadouleau, J. D. Mitchell, Y. Peresse, Chains of subsemigroups, arXiv preprint arXiv:1501.06394 [math.GR], 2015.
O. Ganyushkin and I. Livinsky, Length of the inverse symmetric semigroup, Algebra Discrete Math., 12 (2011) 64-71.
MATHEMATICA
a[ n_] := Sum[ Binomial[ n, k] (Ceiling[3 k/2] - Total[IntegerDigits[ k, 2]] + 1) + Binomial[ Binomial[ n, k], 2] k! - 1, {k, n}]; (* Michael Somos, Feb 25 2014 *)
PROG
(PARI)
A007238(n) = ceil(3*n/2) - hammingweight(n) - 1;
a(n) = { sum(i = 1, n+1, my(Ni = binomial(n, i-1));
Ni * (A007238(i-1) + 2) + Ni*(Ni-1)/2 * (i-1)! - 1) };
vector(25, n, a(n)) \\ Gheorghe Coserea, May 15 2016
CROSSREFS
Cf. A007238.
Sequence in context: A100296 A346818 A120758 * A179603 A298700 A215763
KEYWORD
nonn
AUTHOR
James Mitchell, Oct 13 2013
STATUS
approved