login
A227792
Expansion of (1 + 6*x + 17*x^2 - x^3 - 3*x^4)/(1 - 6*x^2 + x^4).
1
1, 6, 23, 35, 134, 204, 781, 1189, 4552, 6930, 26531, 40391, 154634, 235416, 901273, 1372105, 5253004, 7997214, 30616751, 46611179, 178447502, 271669860, 1040068261, 1583407981, 6061962064, 9228778026, 35331704123, 53789260175, 205928262674
OFFSET
0,2
COMMENTS
Also, values i where A067060(i)/i reaches a new maximum (conjectured).
FORMULA
G.f.: (1+6*x+17*x^2-x^3-3*x^4)/((1+2*x-x^2)*(1-2*x-x^2)).
a(2n) = A038723(n+1), n>0.
a(2n+1) = A001109(n+2).
a(n) = (1/4) * (A135532(n+3) + (-1)^n*A001333(n+2) ).
MATHEMATICA
CoefficientList[Series[(1+6x+17x^2-x^3-3x^4)/(1-6x^2+x^4), {x, 0, 40}], x] (* or *) LinearRecurrence[{0, 6, 0, -1}, {1, 6, 23, 35, 134}, 40] (* Harvey P. Dale, Jun 12 2021 *)
PROG
(PARI) a(n)=polcoeff((-3*x^4-x^3+17*x^2+6*x+1)/(x^4-6*x^2+1)+O(x^100), n)
CROSSREFS
Cf. A041017.
Sequence in context: A154817 A279797 A229486 * A161446 A081097 A031293
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Sep 23 2013
STATUS
approved