

A227792


Expansion of (1 + 6*x + 17*x^2  x^3  3*x^4)/(1  6*x^2 + x^4).


1



1, 6, 23, 35, 134, 204, 781, 1189, 4552, 6930, 26531, 40391, 154634, 235416, 901273, 1372105, 5253004, 7997214, 30616751, 46611179, 178447502, 271669860, 1040068261, 1583407981, 6061962064, 9228778026, 35331704123, 53789260175, 205928262674
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Also, values i where A067060(i)/i reaches a new maximum (conjectured).


LINKS

Table of n, a(n) for n=0..28.
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231242.
Index entries for linear recurrences with constant coefficients, signature (0,6,0,1)


FORMULA

G.f.: (1+6*x+17*x^2x^33*x^4)/((1+2*xx^2)*(12*xx^2)).
a(2n) = A038723(n+1), n>0.
a(2n+1) = A001109(n+2).
a(n) = (1/4) * (A135532(n+3) + (1)^n*A001333(n+2) ).


PROG

(PARI) a(n)=polcoeff((3*x^4x^3+17*x^2+6*x+1)/(x^46*x^2+1)+O(x^100), n)


CROSSREFS

Cf. A041017.
Sequence in context: A154817 A279797 A229486 * A161446 A081097 A031293
Adjacent sequences: A227789 A227790 A227791 * A227793 A227794 A227795


KEYWORD

nonn,easy


AUTHOR

Ralf Stephan, Sep 23 2013


STATUS

approved



