OFFSET
0,2
COMMENTS
If n = F(i1) + F(i2) +...+ F(ik) is the Zeckendorf representation of n (i.e., write n in Fibonacci number system) then a(n) = i1 + i2 +...+ ik. 1 is Fibonacci(2). The variant with 1 = Fibonacci(1) is A227789.
LINKS
Eric W. Weisstein, Zeckendorf Representation
EXAMPLE
a(33) = 20 because Zeckendorf representation of 33 is 21 + 8 + 3 + 1 = F(8) + F(6) + F(4) + F(2), thus a(33) = 8 + 6 + 4 + 2 = 20.
PROG
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, Sep 23 2013
STATUS
approved