login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. equals the series reversion of arcsinh(x) / exp(x).
4

%I #20 Jul 22 2018 09:24:28

%S 1,2,10,80,876,12192,206144,4104704,94092112,2440642560,70676191840,

%T 2260198354944,79113937385536,3008546200346624,123513154739070976,

%U 5444598073252904960,256489070938397360384,12859678961654923395072,683701585124386481758720

%N E.g.f. equals the series reversion of arcsinh(x) / exp(x).

%C Note that arcsinh(x) = log(sqrt(1+x^2) + x).

%F E.g.f. A(x) satisfies: A(x) = sinh(x*exp(A(x))).

%F a(n) ~ n^(n-1) * sqrt((1+s^2)/(1+s+s^2)) * (sqrt(1+s^2)/exp(1-s))^n, where s = 0.84184323411403778647... is the root of the equation sqrt(1+s^2)*arcsinh(s) = 1. - _Vaclav Kotesovec_, Jan 13 2014

%e E.g.f.: A(x) = x + 2*x^2/2! + 10*x^3/3! + 80*x^4/4! + 876*x^5/5! + 12192*x^6/6! + ...

%e where A( arcsinh(x)/exp(x) ) = x.

%t Rest[CoefficientList[InverseSeries[Series[ArcSinh[x] / Exp[x], {x, 0, 20}], x],x] * Range[0, 20]!] (* _Vaclav Kotesovec_, Jan 13 2014 *)

%o (PARI) {a(n)=local(X=x+x*O(x^n));n!*polcoeff(serreverse(asinh(X)/exp(X)), n)}

%o for(n=1,25,print1(a(n),", "))

%o (PARI) {a(n)=local(A=x); for(i=1,n,A=sinh(x*exp(A+x*O(x^n)))); n!*polcoeff(A, n)}

%o for(n=1,25,print1(a(n),", "))

%Y Cf. A227464.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Jul 13 2013