login
A227025
T(n,k)=Number of nXk (0,1,2) arrays of permanents of 2X2 subblocks of some (n+1)X(k+1) binary array with rows and columns of the latter in lexicographically nondecreasing order
6
3, 7, 7, 12, 26, 12, 18, 72, 72, 18, 25, 171, 335, 171, 25, 33, 368, 1366, 1366, 368, 33, 42, 729, 4948, 10050, 4948, 729, 42, 52, 1343, 16115, 65317, 65317, 16115, 1343, 52, 63, 2325, 47659, 375270, 786154, 375270, 47659, 2325, 63, 75, 3819, 129463, 1924848
OFFSET
1,1
COMMENTS
Table starts
..3....7.....12.......18.........25...........33............42............52
..7...26.....72......171........368..........729..........1343..........2325
.12...72....335.....1366.......4948........16115.........47659........129463
.18..171...1366....10050......65317.......375270.......1924848.......8908719
.25..368...4948....65317.....786154......8379285......79224749.....668706345
.33..729..16115...375270....8379285....168973605....3034194621...48518491730
.42.1343..47659..1924848...79224749...3034194621..104606988712.3220901001021
.52.2325.129463..8908719..668706345..48518491730.3220901001021
.63.3819.326522.37616613.5081503151.694140800875
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = (1/2)*n^2 + (5/2)*n
k=2: [polynomial of degree 5] for n>2
k=3: [polynomial of degree 11] for n>6
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..2....0..0..1..1....1..0..0..0....0..0..1..1....0..0..1..0
..0..0..1..1....1..0..1..1....0..0..0..0....0..2..1..1....0..1..0..0
..1..0..1..1....1..0..1..1....1..1..0..1....0..2..2..1....2..0..0..1
..0..0..1..0....2..2..2..1....2..1..0..1....1..2..1..0....2..0..0..1
CROSSREFS
Column 1 is A027379
Sequence in context: A119644 A109386 A024612 * A073881 A137315 A139795
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jun 27 2013
STATUS
approved