OFFSET
0,3
LINKS
Vincenzo Librandi and Joerg Arndt, Table of n, a(n) for n = 0..200
FORMULA
a(n) = Sum_{k=0..n} C(3*k, n-k) * C(4*n-3*k, k).
a(n) = Sum_{k=0..n} C(n+3*k, n-k) * C(3*n-3*k, k).
a(n) = Sum_{k=0..n} C(2*n+3*k, n-k) * C(2*n-3*k, k).
a(n) = Sum_{k=0..n} C(3*n+3*k, n-k) * C(n-3*k, k).
a(n) = Sum_{k=0..n} C(4*n+3*k, n-k) * C(-3*k, k).
G.f.: 1 / (1 - x*G(x)^2 - 13*x^2*G(x)^6) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
a(n) ~ 2^(8*n+5/2)/(7*3^(3*n+1/2)*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 17 2013
EXAMPLE
G.f.: A(x) = 1 + x + 16*x^2 + 118*x^3 + 1004*x^4 + 8601*x^5 +...
A related series is G(x) = 1 + x*G(x)^4, where
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 + 32890*x^6 +...
such that A(x) = 1/(1 + 12*x*G(x)^2 - 13*x*G(x)^3).
MATHEMATICA
Table[Sum[Binomial[2*n+3*k, n-k]*Binomial[2*n-3*k, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 17 2013 *)
PROG
(PARI) {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^4+x*O(x^n)); polcoeff(1/(1+12*x*G^2-13*x*G^3), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^4+x*O(x^n)); polcoeff(1/(1-x*G^2-13*x^2*G^6), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=sum(k=0, n, binomial(2*n+3*k, n-k)*binomial(2*n-3*k, k))}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=sum(k=0, n, binomial(3*k, n-k)*binomial(4*n-3*k, k))}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=sum(k=0, n, binomial(4*n+3*k, n-k)*binomial(-3*k, k))}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 16 2013
STATUS
approved