login
A226451
a(n) = n*(7*n^2-12*n+7)/2.
3
0, 1, 11, 51, 142, 305, 561, 931, 1436, 2097, 2935, 3971, 5226, 6721, 8477, 10515, 12856, 15521, 18531, 21907, 25670, 29841, 34441, 39491, 45012, 51025, 57551, 64611, 72226, 80417, 89205, 98611, 108656, 119361, 130747, 142835, 155646, 169201, 183521
OFFSET
0,3
COMMENTS
See the comment in A226449.
FORMULA
G.f.: x*(1+7*x+13*x^2)/(1-x)^4.
a(n) = A001106(n) + n*A001106(n-1).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n >= 4. - Wesley Ivan Hurt, Oct 15 2023
MATHEMATICA
Table[n (7 n^2 - 12 n + 7)/2, {n, 0, 40}]
CoefficientList[Series[x (1 + 7 x + 13 x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
PROG
(Magma) [n*(7*n^2-12*n+7)/2: n in [0..40]];
(Magma) I:=[0, 1, 11, 51]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Aug 18 2013
CROSSREFS
Cf. A001106.
Similar sequences of the type b(m)+m*b(m-1), where b is a polygonal number: A006003, A069778, A143690, A204674, A212133, A226449, A226450.
Sequence in context: A181619 A067983 A175360 * A185505 A051843 A107464
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jun 07 2013
STATUS
approved