login
A226185
Least positive integer k such that 1 + 1/2 + ... + 1/n < 1 + 1/3 + 1/5 + ... + 1/(2k-1).
1
1, 3, 6, 10, 14, 19, 26, 33, 41, 50, 59, 70, 82, 94, 108, 122, 137, 153, 170, 188, 206, 226, 246, 268, 290, 313, 337, 362, 388, 415, 442, 471, 500, 531, 562, 594, 627, 661, 695, 731, 767, 805, 843, 882, 922, 963, 1005, 1048, 1092, 1136, 1181, 1228, 1275
OFFSET
1,2
LINKS
EXAMPLE
a(2) = 3 because 1 + 1/3 < 1 + 1/2 < 1 + 1/3 + 1/5.
MATHEMATICA
z = 54; f[n_] := 1/n; p[n_] := p[n] = Sum[f[k], {k, 1, n}]; q[n_] := 1/(2 n - 1); Do[s = 0; a[n] = NestWhile[# + 1 &, 1, ! (s += q[#]) >= p[n] &], {n, 1, z}]; m = Map[a, Range[z]]
CROSSREFS
Cf. A226183.
Sequence in context: A134919 A033437 A338335 * A310071 A330259 A024928
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 30 2013
STATUS
approved