OFFSET
0,3
COMMENTS
Z/(3*5) is the integer residue ring modulo 15 with odd prime numbers 3 and 5.
Periodic with period 24.
The numbers 3 and 12 do not occur in the sequence.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..10000
Hong Xu and Wen-Feng Qi, Further Results on the Distinctness of Decimations of l-sequences, arXiv:cs/0601024 [cs.CR], 2006.
Qun-Xiong Zheng and Wen-Feng Qi, A new result on the distinctness of primitive sequences over Z/(pq) modulo 2, IACR, Report 2010/622, 2010.
Qun-Xiong Zheng and Wen-Feng Qi, Further results on the distinctness of binary sequences derived from primitive sequences modulo square-free odd integers, IACR, Report 2012/709, 2012.
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
MATHEMATICA
lst = {}; t = 78; AppendTo[lst, {a = 1, b = 0}]; Do[c = Mod[4*b + 13*a, 15]; AppendTo[lst, c]; a = b; b = c, {t - 1}]; Flatten[lst] (* Arkadiusz Wesolowski, Jun 01 2013 *)
Nest[Append[#, Mod[4 #1 + 13 #2, 15] & @@ {Last@#, #[[-2]]}] &, {1, 0}, 77] (* Michael De Vlieger, Feb 10 2018 *)
PROG
(PARI) lista(nn) = {a = 1; b = 0; print1(a, ", ", b, ", "); for (x=1, nn, nb = (4*b + 13*a) % 15; print1(nb, ", "); a = b; b = nb; ); } \\ Michel Marcus, Jun 01 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Arkadiusz Wesolowski, May 21 2013
STATUS
approved