OFFSET
0,5
COMMENTS
In the square table, m odd (see formula). The order of the recurrence equations is 4. Let it be (a1(m),a2(m),a3(m),a4(m)) the characterizing 4-plet of a(m). The sequence a1(m) belongs to A028403 (2^m+2^((m+1)/2)), -a2(m) to A147538 (2^m*(2^((m+1)/2)-1) and a4(m) to A013824 (2^(2m)*2^((m+1)/2)). -a3(m) sequence formula is 2^m*(2^m+2^((m+1)/2)).
LINKS
Alois P. Heinz, Antidiagonals n = 0..65, flattened
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023.
FORMULA
m even and n even:
a(m,n) = 2^(m*n/2-2)*(2^(m*n/2) + 3);
m even and n odd:
a(m,n) = 2^(m*n/2-1)*(2^(m*n/2-1) + 2^(m/2-1) + 1);
m odd and n even:
a(m,n) = 2^(m*n/2-1)*(2^(m*n/2-1) + 2^(n/2-1) + 1);
m odd and n odd:
a(m,n) = 2^((m*n-1)/2-1)*(2^((m*n-1)/2) + 2^((m-1)/2) + 2^((n-1)/2) + 1).
m even:
a(m,n) = 2^m*a(m,n-1) + 2^m*a(m,n-2) - (2^m)^2*a(m,n-3) with n>2, a(m,0)=1, a(m,1)=a(1,m), a(m,2)=a(2,m).
m odd:
a(m,n) = 2^m*a(m,n-1) + 2^m*a(m,n-2) - (2^m)^2*a(m,n-3) - 2^(((m+1)/2)*n-3)*(2^((m-1)/2)-1) with n>2, a(m,0)=1, a(m,1)=a(1,m), a(m,2)=a(2,m).
EXAMPLE
Array begins:
1 1 1 1 1 1 1 ...
1 2 3 6 10 20 36 ...
1 3 7 24 76 288 1072 ...
1 6 24 168 1120 8640 66816 ...
1 10 76 1120 16576 263680 4197376 ...
1 20 288 8640 263680 8407040 268517376 ...
1 36 1072 66816 4197376 268517376 17180065792 ...
1 72 4224 529920 67133440 8590786560 1099516870656 ...
1 136 16576 4212736 1073790976 274882625536 70368756760576 ...
1 272 66048 33632256 17180262400 8796137062400 4503599962914816 ...
1 528 262912 268713984 274878693376 281475261923328 288230376957018112 ...
...
CROSSREFS
KEYWORD
AUTHOR
Yosu Yurramendi, May 20 2013
STATUS
approved